Medicina Natural

Medicina Alternativa Personalizada. Consultorio


Deja un comentario

¿Qué le dijo un triglicérido a una molécula de colesterol?…”no eres tú, soy yo”

El ejército farmacéutico y sus soldados de bata blanca nos han estado vendiendo por años, la idea de que el colesterol es el principal culpable de las cardiopatías, es decir, de los problemas de corazón que se llegan a experimentar por consumir de manera excesiva alimentos cargados de grasas animales y vegetales. Y es que los fármacos fabricados a base de estatinas, como el Lipitor, el Zocor, el Crestor y otras por el estilo, les han dejado a Pfizer, a AstraZenaca y a otros muchos laboratorios farmacéuticos, carretonadas de dinero contante y sonante.

¿Que le dijo un triglicérido a una molécula de colesterol?

Independientemente de si esas estatinas realmente hacen que el colesterol baje, en la presente publicación le voy a mostrar cómo eso de que el colesterol contribuye a desarrollar una cardiopatía es totalmente falso. Como veremos más adelante, las principales causas de una cardiopatía son la resistencia a la insulina, la inflamación y el estrés crónico [1]Si las moléculas hablaran, un triglicérido le diría a una molécula de colesterol:

“No te sientas mal, tú no has sido la culpable de que el individuo que habitamos haya desarrollado esta cardiopatía. He sido yo, junto con nuestra amiga la insulina, la inflamación causada por los radicales libres y las constantes preocupaciones que nuestro anfitrión manifiesta, los que le hemos complicado su existencia“. Tanto en el libro de Bowden y Sinatra (ob. cit.) como en el trabajo de investigación que publiqué a cerca de los factores que más contribuyen en el desarrollo de una cardiopatía, se pueden hallar argumentos suficientes para rebatir esa teoría que sostiene que el colesterol, es el principal causante de las enfermedades del corazón.

Hace una década que Chris Anderson señaló en un controvertido artículo [2], que el método científico podría caer en desuso, debido a los extraordinarios resultados que estaba produciendo el análisis de las correlaciones de datos masivos (Big Data). Por aquel entonces, la técnica del análisis de datos (data analytics) ya se estaba empleando para plantear hipótesis que hasta ese momento habían emanado de las creencias o suposiciones del científico a cargo de la investigación. La hipótesis así generada debía confirmarse o rechazarse a través de una serie de experimentos minuciosamente controlados. Con el surgimiento de la minería de datos y las tecnologías de procesamiento de datos masivos, los científicos ahora son capaces de derivar hipótesis, a partir de lo que revelan las tendencias de los datos y sus correlaciones.

Los datos sí hablan, y además dicen la verdad

Cuando uno selecciona los atributos que más contribuyen al desarollo de una cardiopatia (veáse Cardiopatías: en las cosas del corazón no basta con una segunda opinión), se encuentra con que la variable a predecir (cardiopatía=falso/verdadero) tiene muy poco que ver con las variables predictoras glucosa y colesterol, y mucho que ver con la frecuencia cardíaca (frec_cardíaca), la angina inducida por el ejercicio (angina_iej) y el dolor o angina de pecho (dolor_dp). Y cuando digo poco o mucho que ver, me estoy refiriendo a lo débil o intensa que puede llegar a ser una correlación estadística entre cada una de esas variables y la cardiopatía o variable de salida (pulse sobre la imagen adjunta para agrandarla).

Los datos hablan por sí mismos y no hay que salir corriendo a la farmacia a comprar 10 cajas de Lipitor, después de que un excelentísimo señor de bata blanca nos ha comunicado que nuestro colesterol está por las nubes y que es imprescindible bajar sus niveles. No sé si me estoy explicando. La correlación es una medida de lo mal o bien que una variable afecta a otra, sobre todo cuando los datos de cada una de ellas no han sido inventados, como suele suceder en los ensayos clínicos aleatorizados tipo doble ciego. El repositorio de datos de los centros médicos de la Universidad de California con sede en Irvin, fue recolectado y puesto a disposición de los ingenieros en informática biomédica y los científicos de datos, para que construyéramos un modelo de diagnóstico como el que presenté en la publicación cuyo vínculo proporcioné en un párrafo anterior. Esos datos reflejan la realidad de un total de 573 casos registrados, mismos que después de haber sido alimentados a una herramienta de minería de datos como WEKA, fueron analizados y correlacionados para su diagnóstico y selección, respectivamente.

Se dice que una variable afecta de manera significativa a otra, cuando su coeficiente de correlación es igual o muy cercano a la unidad. Un coeficiente de correlación entre dos variables nulo o cercano a cero, indica que ninguna de las dos afecta a la otra. De acuerdo con el análisis de correlaciones entregado por nuestra herramienta de trabajo, cuyas capturas de pantalla he mostrando en la secuencia de imágenes adjuntas, es claro que el colesterol no influye significativamente ni en la frecuencia cardíaca, ni en la angina de pecho, ni sobre la que es inducida por el ejercicio (pulse sobre cada una de las imágenes para agrandarlas). Nótese cómo se aplicaron tres criterios de correlación para ponderar la relevancia de cada variable predictora respecto a la de salida.

Realidad, causalidad y casualidad

Como hemos visto, los datos no mienten, y pueden llegar a ser más confiables que las hipótesis que podrían regirse por el sentir de un científico en particular, o los intereses de un laboratorio que pretende convencer a los médicos y al público en general, de las bondades de su última patente farmacéutica. En la época en la que los datos eran escasos o eran demasiados pero difíciles de procesar por no contar con herramientas apropiadas, los investigadores se esforzaban por explicar a toda costa, las causas de un fenómeno. La causalidad era más importante que cualquier otra cosa. Si no se conocían las causas de un síntoma o de una enfermedad, no se podía establecer una hipótesis y mucho menos una teoría sobre lo que estaba ocurriendo.

Como dato curioso, existen descubrimientos que fueron realizados por casualidad y que por lo mismo, no surgieron obedeciendo al principio de la causalidad que tanto promueven los partidarios del método científico. Hay muchos ejemplos de ellos: la penicilina, la radioactividad, los rayos X, el velcro, el teflón, la dinamita, el viagra, el marcapasos, la vulcanización del caucho y el plástico, son solo algunos de esos hallazgos que se produjeron por accidente. ¿Y cree usted que en algún momento, el científico en cuestión se propuso investigar las verdaderas causas de su descubrimiento? Pregúntele a un médico si sabe por qué el viagra produce ese singular efecto en los varones y comprenderá mejor lo que quiero decir. Los millones de dólares que le ha redituado este descubrimiento a Pfizerjustifican de sobra el saber exclusivamente qué es lo que produce, sin necesidad de preguntarse cómo lo hace.

Ahora imagine por un momento que cuenta usted con una herramienta que calcula correlaciones significativas que no implican una mera casualidad, sino que más bien indican una realidad reflejada por las variables que mejor representan el comportamiento de la variable a diagnosticar. Eso es precisamente de lo que se encarga una herramienta de minería de datos como la que usé para concluir que el colesterol no constituye un buen predictor de cardiopatías.

El Proxy: una realidad sin causalidad

Schönberger & Cukier [3] han denominado proxy al conjunto de variables que representan el comportamiento de la variable que se diagnostica. En el caso que nos ocupa, el proxy está constituido básicamente por la frecuencia cardíaca, la angina de pecho y la angina inducida por el ejercicio.  Esto significa que una variación en cualquiera de estas variables predictoras, afecta sensiblemente a la variable a predecir, esto es, a la presencia/ausencia de una cardiopatía.

Ambos autores piensan que una correlación puede ser todo lo que uno necesita para descubrir lo que está pasando entre dos o más variables, aun cuando la misma cifra no revele por qué está pasando. Un proxy es entonces un conjunto de variables predictoras que reflejan fielmente el comportamiento de la variable a predecir, por estar mejor correlacionadas con ésta. Aunque en su obra ellos no mencionan absolutamente nada a cerca del colesterol, lo que yo estoy poniendo aquí al descubierto en relación al fraude farmacéutico de las estatinas, tiene mucho que ver con el hecho de que existe una correlación muy pobre entre el colesterol y las cardiopatías (0.1 para ser exactos).

El precio de bajar el colesterol: los efectos secundarios de las estatinas

Hasta donde alcanzo a vislumbrar, esto constituye una medicina basada en evidencias, porque así lo demostró el análisis de datos de los pacientes de Cleveland y Statlog. Y si los datos también hablaran, le dirían a los médicos: el colesterol no es el principal causante de los problemas de corazón, así que por favor ya no sigas prescribiendo estatinas, porque vas a acabar con la memoria y otras capacidades cognitivas de tus pacientes”. Los efectos secundarios que más deberían preocupar a los pacientes de los médicos que acostumbran recetar estatinas, son el deterioro de la memoria y la capacidad cognitiva.

Un estudio realizado por la Universidad del Estado de Iowa en el 2009 (ob. cit., pág. 144), demostró que el cerebro depende del colesterol para funcionar de manera óptima. “Hay una relación directa entre el colesterol y la liberación de neurotransmisores… El colesterol cambia la forma de las proteínas para estimular el pensamiento y la memoria… afecta lo listo que eres y tu capacidad para recordar las cosas“, señaló en su informe Yeon-Kyun Shin, biofísico y profesor del departamento de bioquímica, biofísica y biología molecular de la universidad de Iowa.
De manera que bajar el colesterol con estatinas puede resultar hasta contraproducente, porque además de provocar dichos efectos secundarios, no ofrece un beneficio sustancial en la prevención de infartos.
Lo que realmente importa entonces es encontrar las verdaderas causas de las cardiopatías. Para ello, conviene dejar de preocuparse por el colesterol total y el “colesterol malo” (también llamado de baja densidad o LDL), para enfocarse más en los triglicéridos y el colesterol de lipoproteínas de alta densidad (HDL), mejor conocido como “colesterol bueno”.

Los verdaderos culpables de las cardiopatías

Por supuesto que habremos de explorar también los posibles factores de riesgo que se asocian a una cardiopatía, tomando en cuenta los hallazgos anteriormente mencionados. Pero como no es posible descubrir las causas de una cardiopatía a través de correlaciones, me interesó conocer la opinión de Bowden y Sinatra a este respecto.
Aunque ambos autores reconocen al azúcar como uno de los principales causantes de las cardiopatías, si miramos más detenidamente las capturas de pantalla mostradas en las imágenes precedentes, podríamos inferir que la glucosa tampoco está muy correlacionada con las cardiopatías, al menos no directamente. Apostaría doble contra sencillo a que si en el repositorio de Irvin se hubieran registrado los niveles de los triglicéridos y/o de insulina de cada uno de los casos atendidos, encontraríamos una fuerte correlación entre cada una de ellas y la variable de salida, esto es, la existencia/ausencia de una cardiopatía.

Pero entonces ¿por qué Boden & Sinatra afirman que el azúcar sí es un factor que aumenta el riesgo de desarrollar una cardiopatía?
En mi opinión, lo hace pero de manera indirecta: el consumo excesivo de azúcar y de carbohidratos afecta a la cantidad de insulina que segrega el páncreas, lo que a su vez produce un aumento de los triglicéridos en la sangre. Ellos lo han expresado de manera muy sucinta: “las dietas que son más bajas en azúcar y carbohidratos procesados reducen la inflamación, el azúcar en la sangre (glucosa), la insulina, la resistencia insulínica y los triglicéridos” (op. cit., pág. 86. Los paréntesis son míos).

De acuerdo con lo anterior, es muy probable que las variables que conforman el proxy estén intensamente y directamente correlacionadas con la insulina o la insulinorresistencia, los triglicéridos y los marcadores de inflamación activa, como el fibrinógeno o la proteína C reactiva, o cualesquier otro que refleje la actividad de las citoquinas. Las citoquinas o citocinas, son moléculas que se encargan de reclutar células para las áreas de inflamación, y cualquier examen de laboratorio que refleje una actividad de esta índole, indicará el grado de inflamación sistémica (aquella que no está focalizada, sino que se ha extendido hacia muchas otras partes del cuerpo).

Por su parte, el estrés crónico viene a ser también una variable que debería repercutir directamente sobre las que componen el proxy, y bastaría con conocer los valores de estas últimas para predecir con un 79% de confianza [4], que el paciente va a presentar o no una cardiopatía, porque resultaría muy complicado medir su nivel de estrés. Es extremadamente difícil cuantificar el nivel de adrenalina y cortisol que está uno segregando a diario, o cada vez que se preocupa por algo o alguien; así que el proxy resulta de mucha utilidad cuando se está pretendiendo identificar lo que está afectando a la variable de salida. Sin embargo, no hay que olvidar que la verdadera causa de una cardiopatía no puede ser determinada a través de una correlación.

Lo mejor que puede hacer usted para prevenir una cardiopatía

En resumen, la insulinorresistencia, la inflamación y el estrés van a influir en el proxy, en la misma proporción en la que éste repercute en el surgimiento de una cardiopatía. Y si usted quisiera hacer algo para mejorar las condiciones de “su proxy”, o sea de su frecuencia cardíaca, de una posible angina de pecho y/o de una probable angina inducida por el ejercicio, lo mejor que podría hacer a partir de este momento, es dejar de consumir azúcares para reducir los triglicéridos y aumentar el colesterol bueno con una adecuada suplementación, ya que ambos determinan el nivel de insulinorresistencia.

El cociente que resulta de dividir la cantidad de triglicéridos entre el nivel de colesterol tipo HDL, es un indicador de que tan insulinorresistente es un paciente. Un cociente con un valor mayor o igual a 3 debería preocupar a cualquiera, porque ese resultado estaría confirmando una insulinorresistencia y un deterioro de las variables del proxy. A modo de ejemplo, en la imagen adjunta (pulse sobre la misma para agrandarla), muestro los resultados de la química sanguínea de un hombre de 59 años que a pesar de tener un nivel alto de LDL, no presenta insulinorresistencia, ya que su nivel de triglicéridos es igual a 80 mg/dL y su HDL es de 45 mg/dL (el cociente aquí es de 1.77).

Conclusiones

1) Para prevenir cualquier cardiopatía, incluyendo un infarto, no es tan importante el valor que tengan los triglicéridos y el colesterol por sí mismos, sino la relación (cociente) que existe entre los primeros y el denominado “colesterol bueno”.
2) Para los efectos del inciso anterior, no hace falta reducir las grasas animales y vegetales, sino disminuir el azúcar, el estrés crónico y la inflamación. Los primeros dos factores de riesgo dependen de usted. Lo que no depende de usted es la inflamación, y dado que ya sabemos que ésta sí es una de las principales causas de los problemas cardíacos, le recomendamos que en caso de haber sido dianosticado(a) con una cardiopatía, reduzca la inflamación con antioxidantes en dosis terapéuticas apropiadas (ortomoleculares).

Un comentario final

Si desconoce el tipo de suplementos que debe tomar para reducir aún más los triglicéridos, o no sabe cómo aumentar el colesterol bueno o cómo determinar las dosis diarias de sus antioxidantes y cada cuándo tomarlos, puede contactarnos para que le confeccionemos una receta que concuerde mejor con su individualidad bioquímica.

“La mejor forma de representar una realidad, no es buscando los datos que justifiquen la existencia de una hipótesis, sino elaborando una teoría a partir de lo que tengan que declarar los datos”
© Sergio López González. Fundación MicroMédix. 31 de mayo de 2018.


¿No encontraste aquí lo que buscabas? En el índice temático hay más artículos que te pueden interesar


REFERENCIAS

[1]  Jonny Bowden y Stephen Sinatra. La verdad sobre el colesterol. Descubre los falsos mitos acerca del colesterol. Un programa efectivo sin medicamentos para rebajarlo.  Urano. 2103
[2] Chris Anderson. The End of Theory: The Data Deluge Makes the Scientific Method Obsolete. Wired, June 2008.
[3] Viktor Mayer-Schönberger & Kenneth Cukier. Big Data: A Revolution That Will Transform How We Live, Work, and Think. First Mariner Books, 2014
[4] López G. Sergio. Cardiopatías: en las cosas del corazón no basta con una segunda opinión. Fundación Micromédix, 27 de enero de 2018.

Anuncios


Deja un comentario

Cardiopatías: en las cosas del corazón no basta con una segunda opinión

¿Podría usted confiar en la opinión de un solo médico cuando éste le ha diagnosticado una cardiopatía que podría terminar en un infarto?
¿Y en verdad cree que una segunda opinión sería suficiente para confirmar o descartar ese primer diagnóstico? … ¿Que le parecería contar con cientos de opiniones por el precio de una sola consulta?
A finales del siglo pasado, nadie hubiera creído que las máquinas pudieran aprender, a partir de centenas de diagnósticos.

Sin embargo, hoy en día ya no es ningún misterio, cómo un ingeniero en informática biomédica descubre el conocimiento implícito en esa inmensa mina de datos.
Pero permítame contarle cómo fue que eso que otrora nos pareció un sueño, pasó a ser parte de nuestra realidad.

Antecedentes y herramienta de diagnóstico

De acuerdo con D. Senthil Kumar y sus colaboradores, el diagnóstico convencional es subjetivo, porque depende del juicio de un solo médico, el que lo emite. En este contexto, estos investigadores sostienen que: “el aprendizaje de máquina puede emplearse para extraer reglas de diagnóstico a partir de las descripciones de los pacientes que fueron tratados con éxito en el pasado, y para ayudar a los especialistas a hacer que el proceso de diagnóstico sea más objetivo y confiable” [1].
En el artículo que intitulé “La informática biomédica en el diagnóstico y la prevención de la esquizofrenia y otros trastornos de la personalidad“, expliqué cómo las máquinas van adquiriendo experiencia conforme van acumulando registros de casos, que son analizados por un algoritmo dotado de inteligencia artificial.
En esa ocasión presenté los casos de esquizofrenia y de otros trastornos de la personalidad que la Fundación Micromédix ha atendido, y analicé cómo los diagnósticos de esos pacientes los utilizaba la herramienta de minería de datos (WEKA), para identificar el fenotipo de los nuevos pacientes.

Propósito del análisis de los datos y su aprovisionamiento

En esta entrega voy a describir cómo este mismo programa puede ser empleado para diagnosticar una cardiopatía (una afección en el corazón), con el propósito de prevenir un infarto. Aparte de la enfermedad a diagnosticar, otra diferencia más que vamos a encontrar en esta entrega, es que los casos a analizar provienen del repositorio de datos de la Universidad de California, con sede en Irvine.

En el mismo repositorio (izquierda) hay registros de pacientes que fueron atendidos en hospitales de Cleveland, EUA (303 casos), Suiza (123 casos) y Hungría (294 casos), así como la base de datos Statlog (270 casos), con valores de la variable a predecir ligeramente diferentes; pero con los mismos atributos (variables predictoras).
Ya otros investigadores como Sundaraman, Kakade, Chaurasia y otros [2] [3], han usado los datos del hospital de Cleveland para demostrar cómo algunas herramientas son capaces de diagnosticar una cardiopatía, con una precisión hasta del 83.5% en condiciones de validación cruzada, haciendo uso de los algoritmos Naive Bayes y CART.

A continuación voy a demostrar cómo se puede aumentar la precisión de este modelo de diagnóstico, fusionando los datos de Cleveland y Statlog, y permitiendo que otro algoritmo aprenda a clasificar los casos, usando esta nueva base de datos.

Descripción de los datos y su preprocesamiento

Como se aprecia en la captura de pantalla de la derecha (pulse sobre la misma para ver los detalles), hay un total de 573 casos registrados (303 de Cleveland más las 270 instancias en Statlog). Existen asimismo 13 variables predictoras y la que el sistema intenta predecir: cardiopatía. Cuando el paciente está sano, esta variable debe ser necesariamente cero. Un valor de uno está representando a los pacientes que tienen alguna cardiopatía. Note también que en la base de datos resultante, 259 pacientes fueron diagnosticados con alguna afección (barra de color rojo), sin especificar exactamente cuál.
En la hoja de Excel que aparece a su izquierda estoy mostrando los primeros 23 registros (pulse sobre la misma para agrandarla). Para unir los datos de Cleveland y Statlog, se modificaron los valores que la variable cardiopatía tenía en el repositorio de Cleveland. En éste, a esta variable se le permitía asumir los valores 0, 1, 2, 3 y 4, que correspondían a un estado de salud (cero) y cuatro posibles tipos de afecciones. En contraste con ello, en Statlog esta misma variable era dicotómica (la que puede tomar únicamente los valores 0 y 1). Para lograr que ambos conjuntos fueran compatibles, los valores 2, 3 y 4 se modificaron a 1 en el repositorio de Cleveland.

Análisis de atributos y su relevancia en el diagnóstico de las cardiopatías

A continuación presento cada uno de los atributos que determinan cuándo un paciente está teniendo problemas de corazón. Las variables se analizan en el orden de importancia que cada una de ellas tiene, a la hora de diagnosticar una cardiopatía. Así, el síntoma que aparece al principio de la siguiente lista, es el que repercute más en el diagnóstico. En la imagen adjunta (pulse para agrandarla) muestro una adaptación al español de la gráfica que aparece en la página 216 de la obra de Chaurasia y otros (op. citada), en donde el colesterol se destaca por ser la variable que menos importancia tiene en este tipo de dolencias, un hecho que Bowden y Sinatra dieron a conocer desde el 2013, en uno de sus más notables trabajos [4].

I.  Dolor o angina de pecho (dolor_dp)

Hay pacientes que manifiestan los síntomas típicos de una cardiopatía, como son la angina de pecho y la fatiga. Ambos malestares suelen presentarse cuando el corazón no está recibiendo suficiente oxígeno. No obstante, tanto Kumar y otros (op. citada, pág. 148), como el análisis que se desprende de la captura de pantalla que aparece a su izquierda (pulse sobre la misma), coinciden en que casi el 50% de los pacientes no manifiestan síntomas, hasta que son sorprendidos por un ataque al corazón (véase a continuación el significado de los valores que esta variable puede asumir). Después de todo, es a través de un electrocardiograma que el médico se da cuenta que existe un problema.

El significado de cada uno de los valores que esta variable puede asumir es como sigue:
1: Angina típica (bien definida):
(a) una molestia en la región torácica subesternal de cualidades y duración características, que es
(b) provocada por el esfuerzo o el estrés emocional y
(c) que se alivia con el descanso o con nitroglicerina.
2: Angina atípica (probable). Cumple con dos de las características anteriores.
3: Dolor de pecho de origen no cardíaco. Cumple con una o ninguna de las características de la angina típica.
4: Paciente sin síntomas.

Para una mejor interpretación de la imagen anterior, puede usted pulsar sobre ésta para ver cómo están distribuidos los pacientes, en función de los valores que esta variable puede asumir en esta base de datos:
Son 43 los pacientes con síntomas de angina típica.
El número de pacientes detectados con angina atípica asciende a 92.
Los que manifestaron un dolor en el pecho que no tiene relación con un problema de corazón (debido tal vez a un reflujo o a una úlcera por ejemplo) son 165.
El 47.6 % (273/573 x 100%) de los pacientes no manifestaron síntomas. A pesar de ello, la mayoría de ellos dieron positivo a una cardiopatía: alrededor de 200 pacientes representados por la sección roja de la barra mostrada en la extrema derecha de la gráfica.

II. La pendiente del segmento ST en condiciones de máximo ejercicio (pend_seg_st)

Una vez que su cardiólogo le explique con lujo de detalle el significado de este atributo, usted  no tendrá problemas para proporcionarnos los valores que a esta variable le corresponden en el electrocardiograma que ese señor de bata blanca le practicó.
Si el informe de su electrocardiograma no especifica cuál ha sido la inclinación del segmento ST de la gráfica que le han entregado, entonces tal vez le interese pulsar sobre la imagen que aparece a su izquierda para darse una idea del significado que tienen los valores de este atributo:
1: Implica que la pendiente en este segmento de la gráfica es ascendente.
2: Representa un segmento ST completamente horizontal.
3: Significa que la pendiente en este segmento de la gráfica es descendente (pulse también en la imagen que aparece a su derecha).
Recuerde que si usted pagó por un análisis de este tipo, está en todo su derecho de solicitar los valores tanto de esta variable, como de los demás atributos que caracterizan a todo electrocardiograma.

Conviene apuntar que el riesgo de sufrir una cardiopatía es mayor cuando el segmento ST en el electrocardiograma no tiene ninguna pendiente (depresión horizontal), que cuando esa misma pendiente es positiva (depresión ascendente). Asimismo, para los pacientes cuyo electrocardiograma ha registrado una pendiente negativa (depresión descendente), el riesgo de sufrir una cardiopatía es ligeramente mayor al 50% (pulse sobre la imagen adjunta para agrandarla).
Observe también en este mismo diagrama de barras, cómo para cada uno de los valores 1, 2 y 3 de esta variable, el número de pacientes es de 272, 262 y 39, respectivamente.

III. Angina de pecho provocada por el ejercicio (angina_iej)

Si después de un tiempo de estar haciendo ejercicio, usted siente dolor en el pecho, es probable que necesite un diagnóstico como el que más adelante estaré proponiendo. Si esto le ha ocurrido más de una vez, contáctenos para estar más seguros de lo que está ocurriendo, ya sea para descartar una posible afección cardíaca (cadiopatía=0), o bien para confirmarla (cardiopatía=1). Lo mejor que uno puede hacer en caso de existir un problema es no alarmarse, pues de sobra sabemos que el estrés es uno de los principales enemigos del corazón, sin restar desde luego la debida importancia a la hipertensión y la glucosa (azúcar en sangre).

Es importante mantener la calma, pues me complace comunicarle que un infarto se puede prevenir con un tratamiento basado en una dieta apropiada y una receta de suplementos específica para las cardiopatías (puede descargarla más adelante). Es lo más sensato que puede hacer para evitar que las cosas se compliquen.
Cualquiera que vaya a ser su diagnóstico, el valor para este variable será nulo si usted nunca ha experimentado dolor en el pecho con el ejercicio (angina_iej=0). Como cabría esperar, el valor de angina_iej será igual a uno si usted ha estado sintiendo dolor. Como se infiere de la imagen adjunta, las personas que experimentan angina de pecho con el ejercicio, muy frecuentemente dan positivo a una cardiopatía.

IV. Resultados del electrocardiograma en condición de reposo (res_electro)

Los posibles resultados de un electrocardiograma estando en reposo pueden ser tres:
Si la prueba salió normal, entonces res_electro=0. Si se detectó una anomalía en la sección de la onda T- segmento ST, entonces res_electro=1. Cuando con el criterio de Romhilt-Estes, el electrocardiograma revelara una franca o una probable hipertrofia en el ventrículo izquierdo, entonces res_electro=2.
De acuerdo con la gráfica adjunta, las anomalías de un electro pocas veces se encuentran en la onda ST-T. Por lo regular, o sale normal, o bien con algún tipo de hipertrofia ventricular.

V. Presión sanguínea en reposo (presión)

Si usted se toma la presión y anota el valor que su dispositivo registró como el mayor, estará obteniendo los milímetros de mercurio de su presión sistólica, que sería el valor que nosotros le asignaríamos a esta variable para realizar su diagnóstico. A fin de cuentas, este dato lo emplea nuestro sistema para valorar si es usted hipertenso, una condición que contribuye a aumentar el riesgo de infarto.

VI. Sexo
Los hombres suelen ser más propensos a las cardiopatías que las mujeres. Si el género de un paciente es masculino, sexo=1; si es femenino, entonces sexo=0.
VII. Edad
Este atributo es un valor numérico que varía entre los 29 y los 77 años. Note que el rango de edades en el que los pacientes son más propensos a desarrollar una cardiopatía está entre los 55 y los 62 años, según se infiere del diagrama de barras adjunto (pulse sobre la imagen para ver los detalles).

VIII. Frecuencia cardíaca máxima ( frec_card_máx)

Es el número máximo de pulsaciones (latidos) por minuto que puede alcanzar el corazón de una persona, al realizar un ejercicio físico que no compromete su salud. Existen varias fórmulas para calcular su valor teórico. La más simple consiste en restar la edad a 220 (226 en caso de ser mujer). La fórmula de Tanaka es un poco más precisa: frec_card_máx= 208.75 – 0.73*edad. Para alguien de 60 años por ejemplo, la frecuencia cardíaca máxima teórica debería ser de 164.95 lpm. Miller por su parte la calcula como frec_card_máx = 217 – 0.85*edad. De acuerdo con la gráfica adjunta, en la práctica, los pacientes que no llegan a registrar en un pulsímetro los 145.8 latidos/minuto, están más en riesgo de desarrollar una cardiopatia, que aquellos que logran superar esa cifra.

IX. Glucosa (medida en ayunas)
De acuerdo con las gráficas que aparecen en la imagen adjunta, el azúcar en la sangre no es una variable que repercuta significativamente en el diagnóstico de una cardiopatía.
Tanto los pacientes cuya glucosa en ayunas fue mayor o igual a los 120 mg/dl (glucosa=1 ), como los que registraron una glucosa con un valor inferior a esa misma cifra (glucosa=0), corren el mismo riesgo de desarrollar una cardiopatía (50%).
Esto no significa que consumir azúcar sea una buena idea, sino que hacerlo es tanto como jugar a los volados con el corazón.

X. Colesterol

Como dije anteriormente, el colesterol tiene una importancia aún menor en el resultado del diagnóstico, que la que podría llegar a tener la glucosa. De hecho, la precisión del modelo seleccionado no se vio afectada cuando decidí eliminar de la lista, la variable colesterol. El modelo dio los mismos resultados con y sin colesterol, cosa que no ocurrió con la glucosa. A continuación describo el criterio que adopté para seleccionar el método que a la postre me entregaría diagnósticos más precisos.

Selección del método idóneo para diagnosticar una cardiopatía

La minería de datos clínicos es una rama de la informática biomédica que nos permite predecir con bastante exactitud, el resultado de un análisis sintomático. Originalmente fueron 13 atributos los que utilicé para comenzar a evaluar tres algoritmos de clasificación (diagnóstico): el perceptrón multicapa y los árboles de clasificación LMT y Random Forest (véase ta tabla comparativa en la imagen adjunta).
Para evaluar la bondad de un algoritmo de predicción, además de la precisión, hay otros indicadores que nos ayudan a confirmar cuándo un método de diagnóstico es mejor que otro. El estadístico de Kappa y la raíz del error cuadrático medio son dos parámetros que cumplen con ese cometido.

Como el objetivo de la presenta entrega no es impartir un curso de minería de datos clínicos o de estadística, por el momento bastará con saber para qué nos sirven esas dos cifras estadísticas y por qué en esta ocasión he incluido otro indicador que en la figura anterior aparece como falsos negativos.
En general, se dice que un algoritmo es mejor que otro si su estadístico de Kappa es mayor que el de cualquier otro. Análogamente, un algoritmo producirá mejores diagnósticos si la raíz del error cuadrático medio que ha generado, es menor que la de cualquier otro.

Ahora bien, en las cosas del corazón, uno debería reducir al máximo el número de diagnósticos que la herramienta de minería de datos clasifica como falsos positivos, que sería el caso de diagnosticar a un paciente sano cuando en realidad está enfermo. Esta situación equivale a decir que alguien no está enfermo cuando en realidad sí lo está, en cuyo caso hablamos de un falso negativo. Todo es cuestión de terminología e interpretación. ¿Y cómo saber cuándo estamos ante una situación como ésta? Pues poniendo a prueba nuestro algoritmo mediante una validación cruzada, tal y como lo explico en el apartado que sigue (pulse también sobre la captura de pantalla adjunta).

Aprendizaje de máquina: sabiduría colectiva a su máxima expresión

En una prueba de validación cruzada, la herramienta de software (WEKA) divide a los datos en diez partes iguales y comienza a aplicar el algoritmo al 90% de ellos, a fin de calcular el valor de la variable que va a diagnosticar (en nuestro caso, cardiopatía). El 10% restante lo utiliza como datos de prueba para estimar qué tanto se está equivocando.
Una vez que se entrena con ese 90%, calcula el valor de cardiopatía para cada caso registrado en los datos de prueba, y lo compara con la opinión que un cardiólogo emitió en el pasado en relación con ese caso.
Tanto si ambos valores coinciden como si no, el software aprende de dicha comparación y memoriza el resultado.

Este procedimiento se repite 10 veces, tomando cada vez como datos de prueba, otro 10% de los datos y un 90% también diferente al que se usó en la prueba anterior como datos de entrenamiento. En cada una de las diez pasadas que realiza el software, el algoritmo cuenta con 515 opiniones (0.90 x 573) de expertos para determinar si un paciente ha desarrollado o no una cardiopatía.

Y es así como el algoritmo que se está evaluando termina construyendo una matriz de confusión (izquierda), en donde uno puede conocer esos falsos negativos de los que hablaba yo en un párrafo anterior. A pesar de todo ese despliegue de inteligencia, las tres pruebas de validación cruzada aplicadas a las 13 variables, y luego a las 9 que quedaron después de eliminar el colesterol, podrían no reflejar la realidad de otro entorno, con pacientes de otras regiones o de epigenéticas distintas. Dado que aquí no estamos manejando un volumen de datos muy grande (Big Data), es evidente que la precisión del modelo disminuirá cuando usemos datos de prueba diferentes a los del conjunto Cleveland-Statlog.

Esta característica es inherente a todo modelo de clasificación (diagnóstico) y se conoce como sobreajuste: una especie de “entrenamiento localizado” que se debe manejar sustituyendo los datos de prueba con datos exógenos, es decir, con datos ajenos a los utilizados en la validación cruzada.

Un modelo 79% confiable

El modelo con 9 variables y el método de Random Forest es el que terminé seleccionando para diagnosticar a mis pacientes, por haber arrojado los mejores indicadores estadísticos. De hecho, su precisión ha resultado ser mayor que la de algunos otros modelos que lo han precedido.
Sundaraman y Kakade de la Northwestern University por ejemplo, obtuvieron una precisión del 70.73% empleando el método de Naive Bayes y los datos de prueba (exógenos) de los hospitales de Suiza [2].

Ellos obtuvieron una precisión del 83.5% con ese mismo algoritmo en condiciones de validación cruzada, resultado que contrasta con ese 97.2% que se obtuvo aquí con el método de Random Forest, bajo el mismo criterio de validación (véase más atrás la imagen intitulada “Selección del modelo con validación cruzada”).
Pero veamos cómo fue que el modelo de Random Forest con 9 variables (izquierda)pudo superar al de Sundaraman y Kakade con 13 variables, una vez que se le aplicó la “prueba de fuego” con los datos exógenos.
Esos datos de prueba los extraje también del repositorio de Irvine y corresponden a casos que fueron atendidos en los hospitales de Suiza y Hungría. De acuerdo con los resultados de dicha prueba (ver ambas imágenes adjuntas), es evidente que el modelo con Random Forest superó al de Naive Bayes en 7.84 puntos porcentuales. Como sea, ambos modelos pueden ser usados en cualquier hospital del mundo como auxiliares en la toma de decisiones clínicas, o por cualquier médico que necesite la opinión consensuada de muchos otros colegas.

La ventaja del modelo que aquí se propone, además de una mayor precisión, es que el paciente solo tiene que proporcionar 9 datos, en lugar de los 13 que requiere el modelo de la Northwestern University.

¿Dio usted positivo a una cardiopatía?

 

Si le han diagnosticado una cardiopatía o está en riesgo de sufrir un infarto, puede solicitar la opinión de unos cuantos cientos de especialistas por el precio de una consulta, descargando la receta que aparece a su izquierda.
Ahí encontrará las dosis terapéuticas (ortomoleculares) y el modo de administración de los nutrientes que desde hace mucho tiempo hemos estado recomendando en estos casos.
La descarga incluye una hora de consulta junto con un diagnóstico como el que se ha descrito a lo largo del presente trabajo.
La consulta se lleva cabo por Skype o vía telefónica y en ella podrá usted aclarar cualquier duda que pudiera tener en relación al tratamiento descrito en la guía terapéutica (pulse sobre la imagen para descargarla).

Conclusiones

Más que una inteligencia colectiva, un modelo como el que acabo de presentar posee una inteligencia artificial capaz de desplegar una sabiduría colectiva.
Por mucho que un egresado de Harvard se haya quemado las pestañas estudiando los misteriosos secretos que guarda el corazón, difícilmente podrá competir con la experiencia acumulada y la precisión con la que realiza los diagnósticos una herramienta de minería de datos clínicos.
Hoy en día, esta tecnología nos permite contar no solo con una segunda opinión, sino con la de centenares de expertos.

© Sergio López González. Fundación MicroMédix. 26 de enero de 2018


¿No encontraste aquí lo que buscabas? En el índice temático hay más artículos que te pueden interesar


RERERENCIAS

[1] D.Senthil Kumar et al. Decision Support System for Medical Diagnosis Using Data Mining. IJCSI International Journal of Computer Science Issues, Vol. 8, Issue 3, No. 1, May 2011
[2] Sundaraman & Kakade. Clinical Decision Support For Heart Disease Using Predictive Models
Northwestern University. Big data Analytics Conference 2015
[3] Vikas Chaurasia et al. Early Prediction of Heart Diseases Using Data Mining Techniques. Carib. j. SciTech, 2013, Vol.1, 208-217.
[4] Jonny Bowden y Stephen Sinatra. La verdad sobre el colesterol. Descubre los falsos mitos acerca del colesterol. Un programa efectivo sin medicamentos para rebajarlo.  Urano. 2103