Medicina Natural

Medicina Alternativa Personalizada. Consultorio


Deja un comentario

Medicina alternativa de precisión para poner tu propio consultorio

La medicina alternativa de precisión es la tecnología que hemos desarrollado para que ahora tú pongas en marcha tu propio consultorio, o para que transformes el que ya tienes en uno nuevo, empleando el mismo modelo de servicio de la Fundación MicroMédix.
No se trata de una franquicia, sino de una transferencia de tecnología que te permitirá conocer todo el teje y maneje de una medicina alternativa muy particular, en la que tuvimos que combinar las técnicas de la inteligencia artificial con las de la medicina ortomolecular y la fitoterapia, para ofrecer tratamientos más limpios (libres de efectos secundarios) y totalmente personalizados.

El modelo de servicio

No necesitas ser naturópata o haber estudiado una carrera en nutrición para echar a andar tu consultorio, porque todo el conocimiento que vas a requerir para manejarlo, lo vas a adquirir a través de la capacitación técnica y la información que nosotros te vamos a proporcionar. Ese conocimiento y el que contienen los archivos que te estaremos entregando como parte de esa transferencia de tecnología, es lo que va a marcar la diferencia entre saber cómo (know how) hacer las cosas para que un tratamiento funcione, y desempeñarse como lo están haciendo los demás consultorios de medicina alternativa.

Para asegurarnos de que tus tratamientos se personalicen y funcionen bien, el conjunto de servicios, archivos de texto y hojas de datos (Excel) que te vamos a entregar comprende lo siguiente:

  1. Asesoría durante la etapa inicial de operaciones (opcional: 12 horas no incluidas en la duración total del entrenamiento*)
  2. Asesoría para la instalación de la herramienta de minería de datos a emplear en el consultorio
  3. Programa de capacitación intensiva, con los siguientes módulos:
    3.1 Elaboración de Microdosis de Medicamentos Alopáticos (1 hora)
    3.2 Microdosis de Plantas Medicinales (3 horas)
    3.3 Autocuración con Medicina Ortomolecular (16 horas)
    3.4 La extracción de conocimiento y el LBD (4 horas)
    3.5 Informática Biomédica Aplicada (4 horas)
    3.6 Extracción de texto con Arrowsmith (text mining) -4 horas-
    3.7 Aspectos clave de la minería de datos (data mining) -4 horas-
    3.8 El proceso KDD y el estándard CRISP-DM (4 horas)
    3.9 Minería de datos clínicos como apoyo en el diagnóstico médico (4 horas)
    3.10 Medicina alternativa de precisión para tratar el cáncer (4 horas)
    3.11 Cómo aplicar la psiquiatría de precisión en tu consultorio (4 horas)
  4. Entregables:
    4.1 Presentaciones en formato Power-Point de los cursos de medicina ortomolecular, informática biomédica y minería de datos (incisos 3.3 al 3.11). Puedes pulsar en la imagen de la izquierda para descargar sin ningún costo, una demo interactiva de la primera sesión.
    4.2 Archivo de casos de éxito para la generación automática de recetas personalizadas con psiquiatría de precisión (8 horas)
    4.3 Archivo de casos de éxito para la generación automática de recetas personalizadas con medicina alternativa de precisión, para el cáncer de páncreas (8 horas)
    4.4 Manual para suprimir los efectos secundarios de los medicamentos alopáticos
    4.5 Guía completa para la elaboración de microdosis de plantas medicinales (incluye dosificación de tinturas)
    4.6 Recetario de nutrientes ortomoleculares (ver cursos)
    4.7 Texto de medicina ortomolecular (676 páginas)
    4.8 Receta inteligente para prevenir y revertir los efectos de la osteoporosis (descargable)
    4.9 Receta inteligente para la autocuración del acné (descargable)
    4.10 Recetas genéricas para el tratamiento de las enfermedades que aparecen en nuestro recetario (descarga sobre demanda)
    4.11 Archivo del logotipo de los consultorios MicroMédix
    4.12 Tarjetas de presentación en formato electrónico, con los datos de contacto del propietario (ver muestra en autoempleo)
    4.13 Etiquetas para los frascos de microdosis en Publisher Pro®

*Para un total de 68 horas estimadas de entrenamiento, el costo total de la transferencia de tecnología lo determinas tú, de acuerdo con tu presupuesto y los descuentos especificados en nuestra sección de membresías.  Así por ejemplo, con dos membresías de 12 horas puedes iniciar con los primeros cuatro módulos del programa (incisos 3.1 a 3.4), obteniendo un descuento del 35%.


Por qué unirse a la cadena de consultorios MicroMédix

Integrarte a la cadena de consultorios MicroMédix te permitirá desarrollar nuevas habilidades y encontrar en el autoempleo, un proyecto de vida más próspero. El que otras personas hagan lo mismo que tú con la misma imagen y eficiencia, es un concepto que ha funcionado muy bien en el mundo empresarial y no tiene por qué no ser así en el ámbito de la salud. A diferencia de las franquicias, el modelo de servicio que aquí te estamos proponiendo no implica el pago indefinido de regalías por el derecho de utilizar una imagen y una marca de prestigio nacional o internacional (puedes estar en cualquier país y poner tu consultorio sin estar obligado a nada).

El escenario: el protagonista (tú), la competencia y otros actores

Los psiquiatras todavía tienen trabajo porque sus pacientes no conocen una mejor alternativa que los medicamentos cargados de efectos secundarios (un psiquiatra ya ni siquiera escucha los problemas de sus pacientes). Pero con las tecnologías que estamos usando actualmente, todo parece indicar que estos singulares personajes podrían quedarse sin clientes, por la sencilla razón de que sus recetas son genéricas y cada vez son menos los pacientes que toleran sus efectos secundarios. Y a pesar de las grandes sumas de dinero que los laboratorios farmacéuticos destinan a sus campañas mercadotécnicas, los consumidores de hoy están decantándose por tratamientos más limpios.

Lo que ha detenido el avance de la medicina alternativa, aparte de la insistente campaña de nuestros detractores en contra de todo lo natural, es que la mayoría de los investigadores en ciencias biomédicas, conocen muy poco o casi nada de inteligencia artificial. Pero los científicos de datos y los ingenieros en informática biomédica que ya estamos trabajando en las aplicaciones interdisciplinarias de la minería de datos y de texto, hemos explotado el aprendizaje de máquina para mejorar nuestros diagnósticos y personalizar nuestros tratamientos, con una precisión que los psiquiatras no podrán igualar jamás con su “Manual Diagnóstico y Estadístico de los Trastornos Mentales (DSM)”, razón de más para que tu nuevo consultorio sea todo un éxito.

Y ya que has encontrado un medio para autoemplearte y ganarte la vida desempeñándote como técnico en informática biomédica, conviene que sepas que tu consultorio funcionaría de una manera muy parecida a como lo hace una franquicia, empleando los métodos que ya hemos comprobado funcionan a la perfección.
Pero para replicar las características de cada consultorio como si éste fuera una franquicia, es indispensable apoyarse en una medicina alternativa de precisión que simplifique al máximo y normalice los procedimientos (no los tratamientos) en cada una de las unidades de consulta.

Asimismo, la normalización de los procedimientos requiere de una estrategia para organizarse y ponerse de acuerdo con la imagen que se ha de proyectar. Esa estrategia fue la que adoptaron algunos pequeños comerciantes cuando se dieron cuenta que no crecían mientras operaban con lo que emanaba de su libre albedrío. Nombres como “La Tuerca de Oro”, “El Rincón de los Sabores” o “La Farmacia de la Esquina”, difícilmente tenían éxito si cada propietario actuaba por separado y abría su “changarro” como Dios le había dado a entender.

Pero con un nombre más apropiado, una imagen más atractiva y un grupo de pequeños emprendedores organizados a través de un convenio de uso de marca, su situación mejoró radicalmente. Y si no pregúntale a los dueños de las FarmaPronto qué fue lo que hicieron para transformar sus modestos e impopulares establecimientos, en una reconocida cadena de farmacias mexicanas. Algo similar ocurrió con las tiendas Oxxo y algo muy parecido sucederá también con tu consultorio Micromédix (sin duda, el antiguo propietario de la  “Farmacia de la Esquina”, puede ser que haya abierto ya otras tres FarmaPronto).

Casos de estudio que ilustran cómo se confeccionan las recetas en el consultorio

En el ensayo que publiqué con fecha 19 de septiembre de 2018 y que lleva por título “Psiquiatría de precisión: aprendizaje automático para personalizar tu tratamiento“, prometí complementar lo que escribí ahí con al menos un caso real que mostrara cómo estamos personalizando actualmente nuestras recetas.
En el presente ensayo la idea es dejar bien claro que la herramienta de minería de datos debe usarse como apoyo en la confección final de una receta, pues puede ser que aunque existieran casos de éxito muy parecidos a los del paciente en turno, todavía quedara por ahí algún síntoma que pudiera no ceder con el tratamiento sugerido por la máquina. Esto viene a colación para desmentir a los escépticos que pensaron que un consultorio concebido de esta manera, propiciaría una confianza ciega en la recomendación de una máquina.

Hecha esta aclaración, quisiera insistir en que lo que estamos ofreciendo no son franquicias. Además de la exención del pago de regalías, nuestro modelo de servicio no estandariza los tratamientos, sino los procedimientos, y hay que ser muy cuidadosos al interpretar los conceptos. Cada consultorio estará empleando efectivamente el mismo procedimiento (la medicina alternativa de precisión); pero generando un producto diferente (una receta personalizada). Como yo lo veo, eso no es un franquicia ni un sistema de producción en serie, sino más bien una plataforma para la confección rápida de productos diferenciados.

Emilio y sus acúfenos: complementando la inteligencia de la máquina con capital humano capacitado

Un aspecto clave del aprendizaje de máquina es el que se refiere al dominio del campo de estudio, que es en esencia el conocimiento que posee el capital humano sobre un tema (pulsa sobre el mapa mental adjunto y localiza la leyenda “comprender los datos”). Para interpretar correctamente el significado de los grupos de casos desplegados por la computadora, el consejero a cargo del consultorio tendrá que comprender bien los principios de la medicina ortomolecular, tanto para homologar las recetas como para optimizar los tratamientos (la  homologación de recetas la explico con detalle en “Medicina alternativa de precisión: inteligencia artificial para curar hasta un cáncer“).

En el caso de Emilio por ejemplo, una vez que obtuve los datos de los suplementos y las dosis terapéuticas (ortomoleculares) de su receta, tuve que optimizarla con melatonina, cisteína y Coenzima Q10, porque los acúfenos era un síntoma que estaba presente únicamente en cuatro instancias del archivo de casos de éxito; pero que según el algoritmo de aprendizaje empleado (ver curso), no eran suficientemente similares a los de Emilio (los métodos para encontrar la similitud entre pacientes los especifiqué en “Psiquiatría de precisión: aprendizaje automático para personalizar tu tratamiento“).

La receta que generó la máquina después de experimentar con los datos de Emilio y no con Emilio (que es como lo haría un psiquiatra), aparece en la captura de pantalla adjunta (pulsa sobre la misma para agrandarla). Es curioso como la máquina ha recomendado aquí una receta que combina niacina con niacinamida. No teniendo un consultorio con un laboratorio virtual como el que aquí estoy presentando, a mí la verdad nunca se me hubiera ocurrido recomendar un tratamiento con ambos nutrientes, porque no es algo muy común entre los referentes de la medicina ortomolecular. Sin embargo, no hay manual o texto de medicina alternativa que diga que eso no se pueda hacer.

Y es aquí donde se produce la gran sinergia entre la inteligencia artificial de una máquina y el capital humano. De hecho, esa mezcla ha estado dando excelentes resultados, porque evita los efectos secundarios de ambos tipos de vitamina B3. ¿No te parece increíble lo que uno puede descubrir con la instrumentación apropiada? Observa también las similitudes que encontró la máquina entre los síntomas de Emilio y los casos que ésta agrupó en el cluster#9 (puedes pulsar sobre la imagen que sigue para ver los detalles).

Aunque la edad no es exactamente la misma en ambos vectores de atributos, tanto  el sexo, el diagnóstico, la escucha de voces, la angustia, la ansiedad, la depresión, los miedos y la confusión, son todos ellos atributos que coincidieron en ambas listas (S=síntoma presente). Hay otros síntomas más en donde hubo coincidencias negativas (N=síntoma ausente) y solo cinco en los que ambos vectores difirieron. ¿Y cómo supimos que la máquina clasificó a Emilio como miembro del grupo #9?
Ella nos los hizo saber mediante una visualización de datos (véase el inciso 4.5 del curso “Solución de Problemas Multidisciplinarios con Minería de Datos“.

El caso de Julia: la importancia de prevenir trastornos de personalidad en la adolescencia

Los síntomas de Julia no han mejorado como quisiéramos, debido a que sigue presentando comportamientos hasta cierto punto anormales, según nos informó su señor padre durante nuestra última consulta.
La primera vez que di a conocer este caso fue cuando publiqué el ensayo “Identificando el fenotipo de la esquizofrenia: un paso más hacia la curación“.
Si nos has estado siguiendo desde entonces, es posible que te hayas dado cuenta que Gustavo, el padre de Julia, es con quien he estado haciendo equipo para poder resolver este caso que a ambos nos mantiene preocupados.

Y aunque ella por el momento solo manifiesta fobias, irritabilidad, cierto aislamiento social y algunos malestares propios de un síndrome premenstrual, nuestra preocupación radica en que existen antecedentes de trastorno bipolar y depresión en dos parientes cercanos a la familia.
Y atención aquí querido lector: si tienes familiares que hayan padecido o estén padeciendo de algún trastorno psicogénico, es importante que le des la debida importancia a aquello de que “más vale prevenir que lamentar“. Hablo en serio. En el caso de Julia por ejemplo, además de haber probado las teorías de Pfeiffer y de Walsh, hoy estamos aplicando la psiquiatría de precisión para encontrar un tratamiento que tome en consideración su edad, su género, sus antecedentes genéticos y los síntomas que presentó en su última consulta.

Y mientras ajustaba los parámetros de mi herramienta para encontrar un grupo de mujeres con una edad similar a la suya, un hecho llamó mi atención al estar experimentando con este dato: noté que las mujeres mayores con problemas de depresión y otros trastornos psiquiátricos, tienden a presentar grandes deficiencias de vitamina D3. Hay una paciente en nuestro archivo de casos de éxito que llegó a consumir hasta 300,000 UI de vitamina D3, aunque usted no lo crea.
No estoy insinuando que Julia deba tomar esa cantidad de vitamina D3; pero sí  las 2,000 UI que sugirió nuestra herramienta durante el análisis (pulsa sobre la captura de pantalla adjunta para agrandarla).

Por qué una cadena de consultorios de medicina alternativa

Porque no habiendo un gobierno capaz de generar fuentes de trabajo, uno debe crearlas y generar oportunidades a través del autoempleo.
Porque nos hacía falta una herramienta de precisión que pudiera estimar cuánto iba a durar el tratamiento de cada paciente.
Porque era necesario que alguien como tú y como yo pusiera un alto a la farmacodependencia que la misma industria farmacéutica ha propiciado en nuestras familias y en nuestra sociedad. ¿O es que vas a permitir que tus hijos sean medicados con Ritalin, nada más porque un señor de bata blanca con aires de CuasiDios así lo dispuso?

El Trastorno de Déficit de Atención por Hiperactividad (TDAH) como pretexto para medicar a los niños

Desde la perspectiva de unos padres como los de Julia, creo que no hay mejor alternativa que la psiquiatría de precisión. Y aunque ella fue diagnosticada por nuestro programa como una paciente con TDHA (por parecerse más a los pacientes con este tipo de trastorno), afortunadamente no ha sido medicada por ningún psiquiatra. Viviendo en España sin embargo, podría quedar vulnerable al sistema tradicional de salud mental.
Estando en contubernio con ese sistema y en caso de ratificar un TDAH, un psiquiatra no vacilaría en recetar Ritalin a esta señorita de escasos 13 años. Y eso es precisamente lo que pretendemos evitar con la psiquiatría de precisión.

El  metilfenidato (Ritalin) es un fármaco que la Administración de Control de Drogas de los Estados Unidos ha clasificado como narcótico de Clase II, al igual que la cocaína, la morfina y las anfetaminas.
Está indicado para mejorar la concentración de algunos niños que a juicio de algunos mercenarios de bata blanca, son más inquietos de “lo normal”.
Conviene que los padres que tengan un hijo o una hija que haya sido etiquetado(a) por algún psiquiatra como “pacientito” con TDAH, conozcan la “paradoja del Ritalin” y lo que apuntó Richard Malter en un artículo que publicó en su página web y que después de traducido al español dice así:

“El uso prolongado de fármacos estimulantes normalmente da como resultado la pérdida del magnesio y el zinc que se encuentran almacenados en células y tejidos, de tal manera que se induce una deficiencia crónica de magnesio en los niños que toman este tipo de estimulantes”.

A diferencia de los llamados efectos secundarios (involuntarios), el conjunto de síntomas que un niño puede experimentar al suspender abruptamente el Ritalin, es un efecto calculado (intencional) o iatrogenia que consiste en un síndrome de abstinencia. La buena noticia es que esa reacción puede ser contrarrestada con sal de mar (sodio) y una ingesta de magnesio y zinc.
Un suplemento quelatado como el que aparece a su derecha, no solo le ayudaría a superar una iatrogenia causada por fármacos estimulantes, sino que sería lo más adecuado para producir el efecto calmante que un niño inquieto podría necesitar, en caso de presentar hiperactividad por exceso de azúcares y comida chatarra repleta de colorantes y saborizantes artificiales.
La iatrogenia calculada debería estar penada; pero a nosotros solo nos corresponde poner al descubierto las prácticas deshonestas de un sistema de salud que no funciona.

En el caso del metilfenidato la iatrogenia se hace todavía más evidente cuando uno termina de analizar el total de síntomas causados por una deficiencia nutricional de zinc. Y es aquí donde cualquiera se indigna ante lo inaudito: la falta de zinc deteriora, entre otras cosas, la capacidad de concentración. Y uno se pregunta: ¿Pues que no es para eso que los psiquiatras recomiendan el Ritalin? En eso radica la paradoja del Ritalin y el gran secreto de la mayoría de los efectos calculados: el metilfenidato está diseñado para imitar las propiedades del zinc, con la diferencia de que este último no produce farmacodependencia.

Por algo algunos expertos recomiendan potenciar el metilfenidato con zinc. Y muchos padres me preguntan: ¿Y por qué entonces los laboratorios no producen zinc, en lugar de drogas?
La verdad es que los minerales, las vitaminas, los ácidos grasos esenciales y los aminoácidos no se pueden patentar, y lo que no se puede patentar no deja dinero. Esos son los fines de la industria farmacéutica, esos son sus medios y ese es el modelo maquiavélico que los príncipes de la salud han estado usando por años para enriquecerse. Para ellos, ese fin justifica los medios, cualesquiera que sean éstos.

Conclusiones

Como nosotros no comulgamos con ese modelo, tuvimos que crear otro que mejorara de verdad la calidad de vida de nuestros pacientes, con tratamientos más inteligentes y libres de iatrogenias y efectos secundarios.
De manera que si usted ya tiene una tienda naturista o desea echar a andar un consultorio como el que aquí he descrito, ya tiene suficientes elementos de juicio para decidir lo que puede hacer con toda esa instrumentación que tendrá a su disposición, una vez que su capital humano conozca los secretos de una tecnología que está ofreciendo mejores soluciones a las enfermedades crónicas, que lo que hasta ahora le hemos visto a la alopatía.

© Sergio López González. Fundación MicroMédix. 18 de octure de 2018


¿No encontraste aquí lo que buscabas? En el índice temático hay más artículos que te pueden interesar


Anuncios


Deja un comentario

Psiquiatría de precisión: aprendizaje automático para personalizar tu tratamiento

No importa qué tan avanzadas estén las ciencias biológicas y de la salud, todavía no hay quien pueda explicar con precisión cómo funciona el cerebro y lo que pasa por la mente de una persona aquejada de un trastorno de personalidad. Existen por supuesto hipótesis que desde hace muchos años han intentado descubrir las causas de la esquizofrenia y otros trastornos psicogénicos; pero aun para los científicos más prominentes, sigue siendo un misterio el por qué ciertas personas se comportan de una manera tan peculiar. Y no se prevé que esa falta de conocimiento pueda ser superada en los próximos años.

Es por eso que algunos científicos de datos en varios lugares del mundo, están proponiendo alternativas para abordar el problema de la salud mental. Tanto ellos como el que suscribe, estamos dejando a un lado las viejas formas de pensar y los descubrimientos farmacéuticos más recientes, para dar paso a una estrategia que en lugar de enfocarse en el paciente promedio, determina con precisión, cuál de las opciones de tratamiento existentes le funcionará mejor a un paciente en particular [1]. En eso consiste la psiquiatría de precisión: una medicina especializada en trastornos mentales, que hace posible el descubrimiento acelerado de tratamientos, con dosis terapéuticas de medicamentos y nutrientes específicos para cada persona.

Una medicina basada en evidencias

La idea de buscar sistemáticamente “pacientes como el mío” en un registro histórico de casos durante la práctica clínica, data desde la década de los 70´s [2]. Con el paso de los años, esa tendencia que a la postre se transformó en costumbre, se ha convertido hoy en una medicina basada en evidencias.
Como resultado de lo anterior, la psiquiatría de precisión viene a ser un tipo de medicina basada en evidencias, porque cada caso de éxito constituye una prueba más de que cierta combinación de sustancias, beneficia a un grupo de pacientes en particular. Es por ello que en otro de mis ensayos apuntaba yo que no hay planta medicinal, fármaco o nutriente que merezca el título de “curalotodo”.
En vista de que una olanzapina, una lurasidona, una risperidona o un haloperidol solo le sienta bien a unos cuantos, la psiquiatría de precisión va a requerir de una herramienta que le ayude a identificar quiénes con esos cuantos. Y lo mismo sucede en el caso de las plantas medicinales y los suplementos en general. Un tratamiento complementario compuesto por ejemplo de un antipsicótico, un anticonvulsivo, un par de vitaminas, uno que otro mineral y un extracto de planta medicinal, podría beneficiar a un paciente diagnosticado con esquizofrenia crónica; pero resultar contraproducente para quien esté experimentando su primer brote y nunca haya tomado psicotrópicos (los fármacos que acostumbran recetar los psiquiatras).

Análisis de similitud entre pacientes (patient similarity analytics)

En este orden de ideas, parece muy atinado concentrarse en comparar casos de pacientes que fueron tratados con éxito en el pasado, con el de cualquier otra persona que esté necesitando ayuda. Es aquí donde uno debe encontrar similitudes entre las características de esa persona, los casos que uno ha resuelto y los que han llevado a buen puerto otros profesionales de la salud en el pasado. Entre mayor sea el número de casos de éxito registrados, mejor será el tratamiento que le estaremos proponiendo a nuestro próximo paciente. Como cualquier otro profesional de la salud, uno debe estar siempre cuestionándose: ¿cuál de todos esos casos de éxito se parece más al que estoy atendiendo en este momento?

Es muy probable que uno no encuentre un caso idéntico al del paciente en turno, lo cual confirma una vez más la validez del principio de la individualidad bioquímica. Estamos hablando de cientos de pacientes, cada uno con decenas de atributos que la máquina debe aprender para encontrar similitudes entre ellos, y entre éstos y los del nuevo paciente. Sin embargo, el  aprendizaje automático es tal que al terminar el proceso, la computadora nos estará recomendando dosis apropiadas de ciertos nutrientes, basándose en las correlaciones y las tendencias detectadas a través de dicho aprendizaje, de acuerdo con los atributos de los casos de éxito seleccionados por ella.

Tendencias y correlaciones: lo importante está en lo que sucede, y no en por qué sucede

De acuerdo con lo dicho hasta aquí, todo indica que la mayoría de los neurocientíficos están más interesados en descubrir las causas de los trastornos mentales, que en el alivio de las personas. Creen que una vez que descubran el por qué de los síntomas, estarán en posibilidad de producir y comercializar esa píldora que aliviará a todas las personas con problemas psicogénicos. Seguramente ese no fue el caso de Louis Pasteur, cuando en 1885 salvó a un niño de contraer la rabia. Él sí que descubrió la causa de esa terrible enfermedad: una infección producida por un virus del género Lyssavirus que ataca al sistema nervioso central.

Y aun sabiendo que en promedio, solo una de cada siete personas mordidas por un perro rabioso contrae la enfermedad [3], existe evidencia al menos en ese porcentaje (14.3%) de que uno corre peligro estando en circunstancias similares. En este caso y en otros muchos en donde el método científico ha podido explicar las causas de la enfermedad (su etiología), no tengo nada que objetar a cerca de sus bondades. Pero insisto, ¿se puede decir lo mismo de lo que ocasiona una esquizofrenia, una psicosis, un ataque de pánico, un trastorno bipolar, un autismo o un alzheimer? Como padre de familia que soy, le pregunto: ¿que es lo que realmente le importa a usted en este instante: lo que pueda estar haciendo un científico en su torre de marfil para explicar el por qué de la enfermedad de su hijo o hija, o lo que realmente lo (la) puede aliviar?

Hay fenómenos físicos cuyas causas son ampliamente conocidas, ya sea porque se han llegado a comprobar experimentalmente, o bien porque están fundamentadas en ecuaciones de alto rigor científico. Tal es el caso de la ley de la gravitación universal. Pero descubrir una ley universal que explique por qué una persona está escuchando voces o está viendo enanitos verdes, parece más que una labor titánica. Y aunque conozco bien las diferentes hipótesis que intentan explicar el por qué de los fenómenos psíquicos, creo que la tasa de éxitos podría aumentar más, aplicando las técnicas del aprendizaje automático a los datos clínicos de los pacientes, que poniendo a prueba esas hipótesis una y otra vez.

De manera que mientras no exista una ley que explique a carta cabal el comportamiento humano, y mientras la psiquiatría convencional no ofrezca algo mucho más convincente que la hipótesis de que la mente se trastorna a causa de una desigualdad en los mensajeros químicos que hay en nuestro cerebro (neurotransmisores), no debemos consentir que las nuevas generaciones continúen haciendo el papel de conejillos de indias, probando un fármaco tras otro hasta que su psiquiatra exclame: “¡éste es el bueno!” (véase también: ¿Fármacos de por vida? Evitando ese efecto que de secundario no tiene nada” y “Maquiavelo y el príncipe de la salud“).

¿No es mejor experimentar con datos, que con ratones y seres humanos?

A pesar de que varias de las hipótesis sobre la esquizofrenia y otros trastornos de la personalidad, nos han ayudado a los investigadores de la Fundación MicroMédix a conseguir una cantidad muy respetable de casos de éxito (definitivamente más que lo que se consigue con la psiquiatría convencional), no resulta muy edificante probar una teoría con un paciente, para confirmar después que la causa de su patología obedece a otros postulados.
En algunos casos hemos apelado a la teoría dopaminérgica y glutamatérgica (la del desequilibrio bioquímico) para ayudar a un paciente a mejorar sus síntomas. En otros hemos recurrido a la teoría del adrenocromo para la biogénesis de la esquizofrenia propuesta por Hoffer y Osmond; a la hipótesis de la respuesta inflamatoria; a la del nivel de metilación de Pfeiffer y Walsh; así como a la que defiende la medicina funcional, en relación a que una permeabilidad intestinal puede ser la culpable de muchos trastornos mentales. En todos esos casos, hemos seleccionado y administrado a nuestros pacientes, los nutrientes que los partidarios de esas teorías recomiendan.

Pero una cosa es administrar nutrientes en dosis ortomoleculares de suplementos como el GABA, la glicina y el inositol, y otra muy diferente es estar experimentando con dosis considerables de antidepresivos, ansiolíticos y antipsicóticos cuyos mecanismos de acción se desconocen. ¿O es que no ha leído usted las fichas técnicas de los medicamentos que le receta su psiquiatra? Y qué me dice de sus impredecibles efectos secundarios y su potencial para ocasionarle enfermedades que en principio no tenía (cormobilidad)?
Aun empleando vitaminas, minerales, ácidos grasos esenciales y aminoácidos como la cisteína, el triptófano y la teanina, es evidente que los experimentos ya no deben seguirse haciendo ni con ratas de laboratorio ni con seres humanos.

Si hemos de experimentar, hagámoslo con datos. Con los datos de los seres humanos. Los datos dicen la verdad, y hay que dejar que hablen por sí mismos, buscando correlaciones y tendencias entre ellos, a fin de descubrir qué es lo que más va a beneficiar al paciente, sin preguntarse por qué lo beneficiará.
Con el laboratorio virtual que a continuación describo, estaremos experimentando únicamente con datos y las veces que sea necesario, hasta obtener una receta que concuerde mejor con tu cuadro clínico o el de tu familiar, tal y como se estableció en los apartados anteriores.

No hay que perder de vista que una psiquiatría de precisión está indicada siempre que la etiologia (las causas) del trastorno no se pueda determinar, o cuando se tengan dudas sobre la misma. Y si hubiera una forma de identificar lo que origina un trastorno, como sería la intolerancia al gluten, el hipotiroidismo, la deficiencia de ciertas vitaminas del complejo B, la deficiencia de vitamina D3, la hiponatremia (deficiencia de sodio), la polidipsia (intoxicación por exceso de líquidos), etc., entonces ya contaríamos con al menos dos evidencias para recomendar un tratamiento más preciso, que aquél que se basa en una sola suposición, hipótesis o teoría.

El laboratorio virtual: descubriendo el tratamiento que solo a ti te puede beneficiar

Nuestro laboratorio virtual permite combinar de manera simulada vitaminas con minerales, ácidos grasos esenciales, aminoácidos y extractos o microdosis de plantas medicinales, con el fin de encontrar el tratamiento que más te va a beneficiar a ti, y solo a ti. En las imágenes adjuntas estoy mostrando los primeros 25 casos que componen nuestra base de datos biomédicos. Al momento de estar escribiendo estas líneas, cada caso de éxito o registro en la hoja de cálculo contiene un total de 87 campos, que corresponden a los atributos que caracterizan al cuadro clínico de cada paciente, empezando por la edad, el sexo, el diagnóstico de su psiquiatra, si experimentó o no alucinaciones visuales y auditivas (escucha de voces); si tuvo o no antecedentes genéticos; si padeció angustia, ansiedad, ataques de pánico y así sucesivamente hasta terminar con la duración de su tratamiento (en meses). En la hoja de Excel de la izquierda aparece la parte final de los registros de los pacientes que mostré en la imagen de la derecha. Sus campos contienen las dosis de los nutrientes que cada paciente tomó para que su caso se convirtiera en uno de éxito.

En la imagen adjunta estoy mostrando un ejemplo de cómo nuestra herramienta de minería de datos (WEKA), divide en grupos a todos los casos de éxito, para que una vez que ingresemos los datos de uno de nuestros pacientes, encuentre las similitudes entre ellos.
Si tú o uno de tus familiares necesita ayuda para corregir cualquier anomalía en su comportamiento, no permitas que las cosas se salgan de control. Concerta una cita para que en la correspondiente consulta nos proporciones la edad, el sexo, los síntomas, las pruebas de laboratorio, los nombres de los medicamentos que tú o tu ser querido están tomando, así como los demás atributos relacionados con la historia clínica de uno de los dos. Solo así la máquina podrá encontrar los registros que más coinciden con el tuyo o el de tu familiar, según lo expliqué en los apartados anteriores. Nuestro trabajo consistirá en realizar varios experimentos, variando en cada uno de ellos, los parámetros que sabemos optimizarán el aprendizaje de la máquina que se encargará de tu caso.
Nota que las tendencias que descubra la máquina influirán en el tratamiento. Así por ejemplo, a las  mujeres con edades cercanas a los 25 años, que tendían a reportar ideas delirantes y a escuchar voces antes de comenzar su tratamiento, se les prescribió alrededor de 2,600 mg de niacina, 1000 mg de niacinamida, 150 mg de piridoxina (vitamina B6), no tuvieron que tomar inositol pero sí los demás suplementos que se indican en la columna correspondiente al cluster (grupo) #1 (recuerda que para ver los detalles, debes pulsar sobre las imágenes).

Observa también que en el párrafo anterior he hecho alusión a lo que la mayoría de las mujeres del cluster #1 tomaron para que su caso se convirtiera en uno de éxito. Y digo la mayoría porque me estoy refiriendo a las tendencias de ese grupo en particular. Al conjunto de valores mostrados en cada una de las columnas de la imagen anterior se le llama centroide, el cual no es más que una lista (formalmente un vector) de valores que mide las tendencias de cada uno de los grupos. Continuando con el ejemplo del cluster #1, el hecho de que mujeres de alrededor de 25 años hayan tomado las cantidades de los suplementos indicados, no significa que absolutamente todas lo hayan hecho, precisamente por tratarse de una medida de tendencia central.

La tendencia central de una variable categórica, como podría ser el síntoma de la ansiedad o el nombre de un antipsicótico, la podemos medir con la moda. La tendencia central de una variable numérica, como la dosis de cualquiera de los suplementos recetados a las mujeres del cluster #1, la medimos de diferentes maneras: con la distancia euclidiana, la de Manhattan, la de Hamming, o con el  coeficiente de similitud de Jaccard, por mencionar las más importantes. Y es que cuando hablamos de encontrar similitudes, no podemos simplemente obtener la media arirtmética para conocer la proximidad entre los valores de un atributo de un registro y los de un grupo previamente clasificado por un método de segmentación (clustering).

Las distancias calculadas con cualquiera de los métodos mencionados es el mejor medio que tenemos en la actualidad para estimar la proximidad (similitud) entre dos casos.
Una ventaja más de aplicar la técnica del aprendizaje de máquina no supervisado al conjunto de casos almacenados en nuestra base de datos, es la de poder descubrir un tratamiento para un conjunto de síntomas (síndrome) cuyo diagnóstico es incierto o desconocido. A quién le importa el nombre que haya usado un psiquiatra para etiquetar a un paciente, si de todas maneras ese diagnóstico fue sacado de un volumen de texto tan inútil como lo es el “Manual Diagnóstico y Estadístico de los Trastornos Mentales (DSM)”. ¿Sabía usted querido lector, que ese manual no contiene absolutamente nada de estadística? … Si desea una discusión más amplia sobre este tema, le recomiendo leer: “El sistema tradicional de salud mental en entredicho“, también de mi autoría.

Pero bueno, independientemente del diagnóstico, lo importante es que una vez dividido nuestro conjunto de datos en varios grupos de casos muy similares, ya podremos agregar el caso de un paciente con un síndrome idiopático (de causa desconocida), para obtener un tratamiento que ayude a mejorar su sintomatología . El mejor ejemplo que se me ocurre en este momento para ilustrar cómo abordamos este tipo de problemas, es el caso de Emilio, un paciente que acudió a este consultorio porque estaba escuchando voces. Con la receta que en ese entonces le propuse, pudimos acallarlas en aproximadamente cinco meses, no sin haber sufrido algunos tropiezos.

Un tratamiento específico para Emilio

Poco después de ese éxito parcial, Emilio me solicitó otra consulta debido a que en esta otra ocasión lo que escuchaba eran zumbidos en los oídos (acúfenos). A él le interesa mucho estar al tanto de todo lo relacionado con la medicina alternativa, y me grada mucho saber que se ha convertido en un gran guerrero biomédico, porque continuamente está buscando remedios naturales que le puedan beneficiar, así como investigando las posibles causas de sus dolencias. Tratando de explicarnos el por qué de los acúfenos y un poco también el por qué de lo poco que habíamos avanzado en su tratamiento, encontré que una posible causa de este nuevo síntoma era un efecto secundario producido por cualquiera de los dos medicamentos que le había prescrito su psiquiatra: la sertralina y/o la trazodona. En mi opinión, la combinación indiscriminada de pisocotrópicos (el consabido cocktel) con alimentos chatarra, estimulantes y drogas ilegales, también aumenta el riesgo de desarrollar tinnitus, que es el nombre con el que se designa a los acúfenos en los países de habla inglesa.

En ese momento yo no contaba con el laboratorio virtual que ahora tengo, y tampoco me hubiera gustado decirle algo así como “y ahora que ya conocemos la causa probable de tus acúfenos, que hacemos?
Menciono esta anécdota porque ilustra un poco lo que uno puede conseguir, una vez que conoce la causa de un síntoma como los acúfenos, es decir, nada.
Pero con un laboratorio dotado de inteligencia artificial, el panorama luce completamente diferente, pues la computadora de la Fundación MicroMédix solo está esperando que la alimente con más casos de éxito de pacientes que alguna vez padecieron acúfenos.

Solo así podremos hallar las correlaciones entre ese síntoma y los suplementos que tienen el potencial para aliviarlo, dependiendo ello de las tendencias que la máquina y un servidor podamos detectar.
A reserva de que Emilio me proporcione los datos que necesito para que las correlaciones y las tendencias nos muestren el camino hacia el éxito, en mi próxima publicación estaré presentando los resultados de este proyecto, ya sea para dar a conocer los nutrientes que conformaron la receta que perfeccionamos para Emilio, o bien los que integraron la terapia inteligente para Esperanza, otra paciente que tuvo a bien comprender el mensaje que a lo lo largo de este ensayo he querido transmitir y que en una sola frase me gustaría resumir:

“No es posible resolver los problemas de hoy con las soluciones de ayer”… Roger Van Oech
© Sergio López González. Fundación MicroMédix. 19 de septiembre de 2018


¿No encontraste aquí lo que buscabas? En el índice temático hay más artículos que te pueden interesar


REFERENCIAS

[1] Bzdok, D., Meyer-Lindenberg, A., 2018. Machine learning for precision psychiatry: Opportunities and challenges. Biological Psychiatry: CNNI, in press.
[2] Gallego et al. Bringing cohort studies to the bedside: framework for a ‘green button’ to support clinical decision-making. Journal of Comparative Effectiveness Research. (2015) 4(3), 191–197
[3] Viktor Mayer-Schönberger & Kenneth Cukier. Big Data: A Revolution That Will Transform How We Live, Work, and Think. First Mariner Books, 2014
[4] Perna & Nemeroff. Personalized Medicine in Psychiatry: Back to the Future. Personalized medicine in psychiatry 1–2 (2017) 1
[5] Jiang F, Jiang Y, Zhi H, et al. Artificial intelligence in healthcare: past, present and future. Stroke and Vascular
Neurology 2017;0: e000101. doi:10.1136/svn-2017-000101
[6] Awwalu et al., Artificial Intelligence in Personalized Medicine. Application of AI Algorithms in Solving Personalized
Medicine Problems. International Journal of Computer Theory and Engineering, Vol. 7, No. 6, December 2015
[7] J.Archenaa et al. Health Recommender System using Big data analytics. Journal of Management Science and Business Intelligence 2017 2(2) 17-23. doi: 10.5281/zenodo. 10.5281/zenodo.835606
[8] Panahiazar et al. Using EHRs for Heart Failure Therapy Recommendation Using Multidimensional Patient Similarity Analytics. Stud Health Technol Inform. 2015 ; 210: 369–373.
[9] Bertalan Mesko (2017) The role of artificial intelligence in precision medicine, Expert Review of Precision Medicine and Drug Development, 2:5, 239-241, DOI:10.1080/23808993.2017.1380516